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ABSTRACT 

We construct reaction-diffusion models for the population dynamics of a species 
colonizing an island from a source population on a continent. We view the source 
population as inducing a density or flux of immigrants onto the island and interpret 
colonization as succeeding if the population on the island is predicted to persist even 
when immigration from the continent is stopped. To capture the observation that a 
sufficiently large population or density must be attained for colonization to succeed, 
we assume AUee (i.e., bistable) dynamics rather than logistic dynamics for the 
colonizing population. We consider the cases of colonization in both the absence and 
presence of a competitor. We use reaction-diffusion theory, especially comparison 
methods and sub- and supersolutions, to determine how parameters such as the 
distance from the continent to the island and the dispersal, birth and mortality rates, 
carrying capacity, and minimum viable population density of the colonizing species 
affect the outcome of the attempted colonization. In the case of colonization in the 
presence of a competitor we consider a number of scenarios involving different types 
and strengths of competition. Our analysis permits us to draw conclusions about the 
characteristics of a species that make it a good colonizer. 

1. INTRODUCTION 

The study of island populations has been an important and some- 
times influential part of ecological and evolutionary theory ever since 
Darwin's celebrated visit to the Galapagos. The island biogeography 
theory of MacArthur and Wilson [1] has stimulated much research and 
some controversy over the last quarter of a century (see [2,3] for 
discussion and references) and has been applied to issues of conserva- 
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tion and refuge design, with the application sometimes engendering 
further controversy (see [2,4]). The MacArthur-Wilson theory is based 
on the idea that the species composing an island community are 
determined by stochastic events of colonization and extinction, with the 
total number of species remaining roughly constant at a dynamic 
equilibrium induced by a balance between colonizations and extinctions. 
A limitation of the MacArthur-Wilson theory is that the underlying 
models are not spatially explicit and use population dynamics only 
indirectly to determine the influence of birth and death rates and 
carrying capacities on the probability of colonization or extinction. 
Furthermore, there are some difficulties in defining successful coloniza- 
tion; see [1, p. 64; 3, p. 86]. Both theoretical and empirical considera- 
tions suggest that the size of an island and its distance from a source of 
colonists should affect the number and nature of species inhabiting it 
[1,3]. Area effects were derived by Preston [5] by assuming the total 
population of all species on an island to be proportional to the area of 
the island and the relative abundances of species to be given by a 
lognormal distribution. In [2] two of the co-authors derived species area 
curves from spatially explicit population dynamical models based on 
reaction-diffusion equations. In that work only extinctions were consid- 
ered as a structuring factor. In the present work we construct spatially 
explicit models for island colonization, again based on reaction- 
diffusion equations, use them to give a precise definition of successful 
colonization, and study them to see how the distance of the island from 
a source of colonists interacts with the population dynamical and 
dispersal characteristics of those colonists to affect the prediction of 
success or failure of colonization. We perform qualitative and quantita- 
tive analyses for the case of a single colonizing species and a qualitative 
analysis for the case of colonization in the presence of a competitor. In 
both situations we obtain criteria for successful colonizing; the differ- 
ence is that for a single species we also examine the parameter depen- 
dence of the criteria in some detail. The parameters include dispersal 
rates, population growth or mortality rates, carrying capacity, minimum 
viable population density, island size, and the distance of the island 
from the source population. 

Our models are based on considerations somewhat similar to those 
used to study spatial effects in the population dynamics of the spruce 
budworm in [7] and in a more general context in [6] and use methods of 
analysis developed in those works. However, since we are modeling a 
different phenomenon our models differ considerably in detail from 
those of [6, 7]. We envision colonization as a two-step process: First, we 
think of emigration from a continent inducing a density or flux of 
potential colonists via diffusive random dispersal with mortality; then 



MODELS FOR A SPECIES COLONIZING AN ISLAND 67 

we use that induced density or flux as an initial condition for population 
dynamics with dispersal on the island. We define the colonization to be 
successful if the colonizing species would be predicted to persist on the 
island in the absence of further immigration or emigration. For  this 
formulation to yield meaningful results we must assume some sort of 
Allee effect for the population dynamics on the island, at least in the 
case of a single species. By an Allee effect we mean that the population 
will decrease at low densities, increase at moderate densities, and 
decrease again at high densities (see [8-10]). Roughly, the presence of 
the Allee effect requires that the colonizing species attain a density 
above some threshold over a region of sufficient size if colonization is to 
succeed. This is plausible from a biological viewpoint [1, Chap. 4; 3, 
p. 86]. The threshold can be interpreted as a minimum viable popula- 
tion density of the sort discussed in [11]. Without an Allee effect the 
models would always predict successful colonization in the single-species 
case. For the case of two competitors, it turns out that if there are no 
Allee effects and there is a globally stable coexistence equilibrium then 
colonization always succeeds, but if the states with only one species 
present are locally stable or if there are Allee effects then history and 
geography determine the success or failure of colonization. 

The article is structured as follows: The models are formulated in 
Section 2; the simplest version of the single species model is analyzed 
in Section 3; a more sophisticated single-species model is analyzed in 
Section 4; and models for colonization in the presence of competition 
are discussed in Section 5. Conclusions and comparisons with related 
work are drawn in Section 6. The most sophisticated mathematical 
analysis is in Sections 4 and 5; the conclusions of Section 6 are mostly 
stated in nonmathematical terms. 

2. DISCUSSION OF M O D E L I N G  

We envision a source population on a continent producing via 
dispersal a population on an island at some distance from the continent. 
We assume the dispersal takes place along a somewhat inhospitable 
transit corridor, which typically we would view as a body of water or a 
region of unsuitable habitat. We interpret colonization as successful if 
the population on the island persists when immigration from the conti- 
nent ceases. We employ two different regimes for determining a popula- 
tion density profile on the island to be considered as the initial profile 
at the cessation of immigration. The first and simplest is to take the 
distribution that would be expected over the transit corridor under the 
assumption of immigration over a prolonged period of time and use it 
directly. A second approach is to view immigration as inducing a flux of 
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individuals into the island, which then interact with the island environ- 
ment to produce a density profile. The first approach is perhaps a more 
accurate description for airborne immigrants, such as birds or flying 
insects, since they might fly over the island in the same way as over the 
transit corridor. The second approach might be a more accurate de- 
scription for terrestrial animals swimming to an island and then inter- 
acting with its boundary. In either regime we then use the initial profile 
as the starting point for a population model on the island that assumes 
no further immigration occurs. We base our analysis on diffusion 
models. Since we wish to study situations in which some threshold level 
of immigration is needed for colonization to succeed, we assume an 
Allee effect in the population dynamics on the island. We treat two 
scenarios, the first in which the immigrant species is considered without 
specific reference to any other species and the second in which the 
immigrant species competes with a species that is already established on 
the island. 

Let us now describe the modeling process in more detail, treating 
first the scenario in which we consider only a single species. We then 
discuss the case in which the immigrant species competes with an 
established species. We begin by idealizing to a single space dimension. 
We assume that the island to be colonized is of length 1 and that the 
distance from the continent to the near edge of the island is L. We 
assume that the species emigrates from the continent at its carrying 
capacity (K c) for the continent. The species does not reproduce in 
transit from the continent to the island. Consequently, there will be a 
net reduction in the density of the species as it moves toward the island, 
due to factors such as physical inability to survive the trip and predators 
along the transit corridor. We assume this reduction is proportional to 
the population density. Consequently, if we locate the continent, island, 
and transit corridor along the x-axis with the edge of the continent 
nearest the island at 0, the population density obeys the linear popula- 
tion law 

u t = ~ o U x x  - r o u  (2.1) 

in the transit corridor, where /x 0 > 0 is the rate of diffusion of the 
species through the transit corridor medium and r 0 > 0 is the constant 
of proportionality for the decay of the species in the transit corridor. If 
this population law (2.1) is subject to the constraints 

u(O,t) =/(o, u(o%t) =o, 
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it has stable equilibrium 
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u(x) =Kce- ~X/~-~°/~'°)x, x > 0 .  (2.2) 

(This form of expected density is also used in [3; p. 68] and [7].) 
We use the equilibrium (2.2) to determine the population density 

profile of the immigrant species at the time immigration ceases in our 
first regime and also the influx of the immigrant species to the island in 

our second. In the first regime, we simply take K ~ e - ~ X , x  ~[L, 
L + l] as the population density profile of the immigrant species at the 
cessation of immigration. If we now translate the x-axis so that the edge 
of the island nearest the continent corresponds to the origin, we have 

u( x) = Kce- ~o/~o)(X + L), (2.3) 

x ~ [0,/], as population density profile at the cessation of immigration in 
the first regime. For the second regime, we have from (2.3) that the 
influx into the island ~0ux(0) is given by 

tZoux(O) = - Kc r o ~ ~ o e - ~  L. (2.4) 

We use (2.4) in deriving the population density profile of the immigrant 
species at the cessation of immigration in our second regime. However, 
this derivation also employs in an essential way the population law that 
the immigrant species obeys on the island. As a consequence, we discuss 
next the population dynamics of the immigrant species on the island. 
We follow this discussion with the derivation of the population density 
profile of the immigrant species at the cessation of immigration for the 
second regime. Once we have derived the initial population density 
profile in this case, we describe in more detail what is meant by 
successful colonization. 

As previously indicated, we suppose the dynamics on the island to be 
of the Allee type. By the Allee type, we mean that the local population 
law follows a pattern of decline for small populations or population 
densities, growth for some intermediate range of populations or popula- 
tion densities (i.e., up to a carrying capacity), and decline for popula- 
tions or population densities above this range. In [10], Lewis and 
Kareiva mention a number of reasons why such an effect could occur, 
among them less efficient feeding at low densities, reduced effectiveness 
of vigilance and antipredator defences, and inbreeding depression. 
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Perhaps the simplest mathematical model reflecting the Allee effect is 
given by the initial value problem 

du 
d----{ = u ( u - a ) (  K - u )  

u ( 0 )  = u0 

(2.5) 

with 0 < a < K. In (2.5), u represents the population of a species in a 
uniform environment, K the carrying capacity of the population, and 
a / K  the "fraction of carrying capacity below which the ill-effects of a 
low density produce negative population growth" [10, p. 143]. See also 
the discussions in [8, 9]. It is easy to calculate that (2.5) has as its general 
solution 

l u - a l  K 

luIK-aIK _ ul a 
CoeaK(K-a) t, 

where C o = lu 0 - alK/(lUoIK-aIK = u01a), provided u 0 > 0 and u 0 4: a or 
K. (Note that 0, a, and K are equilibria for (2.5).) If u 0 < a, then u ~ 0 
as t ~ ,  while if u 0 > a, u ~ K as t ~ .  Hence, in this model, any 
population of initial size less than a is doomed to extinction, so that a is 
referred to as the minimal viable population. In corresponding reaction- 
diffusion models (i.e., having reaction term of the form ru(u - a) (K - u), 
u no longer represents a population but rather a population density. In 
such models, a now represents the minimum uniform population den- 
sity, in the sense that any initial population density below a throughout 
the island leads to extinction, while any population with initial popula- 
tion density above a throughout the island persists. In our analysis we 
examine nonuniform initial population densities with the density above 
a on portions of the island and below a on other portions of the island. 
As we shall see, a significant aspect of our analysis lies in determining 
the asymptotic behavior of certain such initial population density pro- 
files. We assume therefore that the imigrating species is subject on the 
island to the population law 

Ut=l~Uxx+ f ( u ) ,  ( x , t ) ~ ( O , l ) × ( O , o o ) ,  (2.6) 

where 

f ( u )  = r u ( u - a ) ( K - u ) ,  u ~ [0, K ] .  (2.7) 
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Once immigration ceases, we assume in addition that 

Ux(O,t ) = 0 = ux(l,t), t ~ (0,oo). (2.8) 

With (2.8), we are making the simplifying assumption that once mem- 
bers of the species reach the island they remain there, so that we 
augment the population law (2.6) with a reflecting (i.e., Neumann) 
boundary condition. (It would also be reasonable to impose a mixed or 
Robin-type boundary condition, given that the surrounding medium 
corresponds in part to the transit corridor and should not be viewed as 
utterly inhospitable to the species.) In (2.7), K = K i, the carrying 
capacity for the species on the island. We do not assume that K i = K c. 
The reason is that the island is some distance from the continent, and 
hence the topography, vegetation, and freshwater supply may be sub- 
stantially different on the island. K i > K c would reflect better living 
conditions for the immigrant species on the island than on the continent 
and K i < Kc just the reverse. Also in (2.7), r is a parameter  reflecting 
the growth rate of the species. In [10], Lewis and Kareiva note that if 
K = K i = 1 and if f(u) is to have maximum value 1, 

2 3/2 
r=27 / (2[ ( ( l+a)Z-9a /2 ) (1+a)+( (X+a)  -3a)  ] ) ,  

where as if f (u) /u  is to have maximum value 1, r = 4 / (1  - a) 2. Further, 
we note that f(u) in (2.7) is defined only for u E [0, K]. In our analysis, 
we sometimes need to consider u < 0 or u > K. It does not materially 
affect the model whether we assume f is the cubic given in (2.7) for all 
real values of u or we assume that y -- f(u) extends linearly in a smooth 
way from (0,0) and (K, 0). However the second assumption is frequently 
an aid in the mathematical analysis, and for this reason, we make that 
assumption when needed. 

We now turn our attention back to the derivation of the population 
density profile of the immigrant species at the cessation of immigration 
in our second regime. Recall that in this case we think of immigration 
inducing a flux of individuals into the island, which then interact with 
the island environment to produce the desired density. It is evident that 
(2.6) is the population law we must use in this situation. Since we 
assume the immigrant species remains on the island once it arrives, it is 
reasonable to take (au/an)(l , t)=ux(l , t)=O as the augmenting 
boundary condition to (2.6) at the far end of the island. What remains 
to determine is (au/an)(O, t )=-  ux(O,t). Recall that the influx from 
the continent is given by (2.4). From (2.6), the flux from the island at the 
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edge nearest the continent is tZux(O). Following Ludwig et al. [7] we 
match /z0ux(0) and /xu~(0) to obtain 

ux(O ) Kc V/-~° I~° - ~ L  (2.9) - -  ~ e . /x 

Consequently, the population density profile of the immigrant species at 
the cessation of immigration in the second regime is determined by the 
boundary value problem 

u t = tZUxx + f ( u )  in (0, l) × (0,oo) (2.10) 

Ux(O, t )  = - 3' on (0, oo) (2.11) 

u x ( l , t  ) = 0 on (0,oo), (2.12) 

where f ( u )  is as in (2.7) and y = Kc(~0/z  0 / / z ) e -  ~ L ,  as in (2.9). 
For 3" > 0, 0 is a strict subsolution to (2.10)-(2.12). The theory of 
parabolic partial differential equations discussed in [6,12] guarantees 
that the solution to (2.10)-(2.12) corresponding to zero initial data, say 
u(x , t ) ,  converges to the minimal positive equilibrium for (2.10)-(2.12) 
and that, moreover, any solution to (2.10)-(2.12) with nonegative initial 
data is at least as large as u(x, t) for all x ~ (0, l) and t > 0. Therefore, 
should we stop the immigration and should model (2.10) with boundary 
data (2.8) predict survival of the immigrant species when the initial 
density is the minimum positive solution of 

- tZUxx = f ( u )  in (0, l) 
U x ( O )  - -  - 3" 

U x ( t )  --0, 

(2.13) 

(2.14) 

(2.15) 

we can expect the population to persist when immigration ceases. 
Hence we take the minimum positive solution to (2.13)-(2.15) as the 
population density at the time immigration is stopped in our second 
regime. 

Immigrant species are described in the theory of island biogeography 
[1] in terms of their proficiency in dispersal and colonization. The 
quantity y in (2.14) indicates how proficient the species is at dispersing 
from the continent to the island, with an increase in y indicating an 
increase in proficiency of dispersal. The parameter dependence of 31 is 
shown in (2.9). Large values o f /% correspond to large mean distances 
traveled per unit time and small values of r 0 correspond to low rates of 
mortality in transit. Thus for a species with a fixed dispersal rate /z on 
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the island, having a large value of N0 and a small value of r 0 is 
indicative of a good disperser. Note that the ratio of the dispersal rate 
over the transit corridor to that over the island also affects the flux of 
the species onto the island. If for example,/x 0 = /z ,  w h i c h ~ u s i b l e  in 

say the case of flying insects, then y = Kc~/( r 0 / / z0 )  e -  x/~r°/~°)m, which 
does not exceed Kc/eL independent of tz 0 and r 0. (In this case y 
achieves the maximum value K~/eL when /x 0 = ro L2. Biologically, this 
piece of information suggests that the advantage proferred by arriving 
at the island quickly may be offset if it also results in the immigrant 
spreading itself out on the island at low densities.) Since we assume that 
once the immigrant species arrives on the island it remains rather than 
attempting to return to the continent or disperse off of the island, it is 
plausible that species such as birds, which can have a large /z 0, may 
have a considerably smaller/x. 

The parameters in the population law (2.6) affect the proficiency of 
the immigrant species at colonizing. A smaller value of the ratio a / K  
of the minimum uniform population density to the carrying capacity 
indicates a better colonizer than a larger value. 

In either regime, we view colonization as successful provided the 
solution u(x,t) to (2.6)-(2.8), having the population density of the 
immigrant species at the cessation of immigration as initial condition, is 
asymptotically supported throughout the island. By this last phrase, we 
mean there is a positive constant c and a time t o so that u(x,t)>1 c for 
all x ~(0,1) and for all t >/t 0. Certainly u will be asymptotically 
supported throughout the island if it converges to a positive equilib- 
rium. Moreover, it follows from [13] that for (2.6)-(2.8) any solution 
either converges to zero or converges to a positive equilibrium (and 
hence in such case is asymptotically supported throughout the island). 
However, it is not necessary to establish that u converges to a positive 
equilibrium to guarantee that it is asymptotically supported throughout 
the island. In a sense the constant c is arbitrary. However, c should not 
be too small so as to avoid detrimental stochastic effects. In some cases, 
depending on the ratio r / lz  of growth rate to diffusion rate of the 
immigrant species on the island, we are able to take c = a - e  with 
e > 0 and arbitrarily small. Indeed, there will be cases in which c = K - 
is a suitable choice and u tends to the carrying capacity K as t ~ ~. We 
gain further insight into success at colonization by examining u(x,O) 
from our first regime more closely. Recall that in this case u(x,0) = 

Kc e- ~ x + t )  for x ~ [0,l]. If we require this density be above the 
minimum uniform population density a on the entire island, we need 

K~e- ~ t t + L )  >~ a. If l is large relative to the other parameters this 
requirement is severe. On the other hand, since u(x,O) is decreasing in 
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x on (0,l), we must have Kce-  ~ L  > a or the immigrant s ~ s  

goes extinct. Therefore the case Kce-  ~ 0 + 1 ~ )  < a < Kce-  ~/(ro/~,o)L 

is of interest. If a is very close to K ~ e ~  L, the interval over which 
u(x,O) > a is very small and it is likely that the immigrant species goes 

extinct. Likewise, if a is very close to K~e- ~ 0 + L ) ,  u(x,O) > a over 
most of the island and it is likely that colonization will be successful. 
Consequently, we see in the first regime that the immigrant species 
should be successful at colonizing the island provided that its popula- 
tion density at the cessation of immigration is larger than a on enough 
of the island. Such is the case in the second regime as well, although in 
this case we do not know that u ( x l , 0 ) > a  implies u(x ,O)>a  for 
O ~ x < x  1. 

Let us now consider the scenario in which the immigrant species 
competes for resources on the island in a direct way with another 
species. We envision the immigrant species dispersing from the conti- 
nent to the island via the same previously described mechanism, while 
the other species is to some extent established on the island. Let v(x,  t) 
denote the population density of the second species. Once immigration 
ceases, we subject u and v to the population laws 

u, = t*Uxx + f ( u , v )  

v, = + g ( u , v )  

in(0, l) × (0, ~) ,  (2.16) 

where O f / O r  < 0 and Og/Ou < 0 and t = 0 denotes the time of cessa- 
tion of immigration. We assume as before that once the immigrant 
species reaches the island it remains. Hence we take 

ux(O,t ) = 0 = ux( l , t  ) for t > 0. (2.17) 

Since the other species is to some extent established on the island, it 
may have evolved on the island in such a way that the transit corridors 
surrounding the island are now quite inhospitable. Consequently, we 
allow either 

vx(O,t ) = 0 = vx(l , t  ) for t > 0 (2.18) 

o r  

v(O,t)  = 0 = v ( t , t )  for t > 0 (2.19) 

as the boundary constraint for the second species. We employ (2.3) as 
the density of the immigrant species at the cessation of immigration. 
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The density v(x,0) of the second species at the time of cessation of 
immigration of the first species is somewhat arbitrary and reflects 
the extent to which the second species is established on the island. If 
the second species is regarded as well established on the island, then 
the solution to 

v, = VVxx + g ( O , v )  

augmented by (2.18) or (2.19) and starting at v(x,0) is asymptotically 
supported throughout the island. We for the most part assume that 
the reaction terms exhibit an Allee effect; i.e., f(u,O) and g(O,v) are of 
the form (2.7). However, for (2.16)-(2.18) it is sometimes possible for 
the outcome of the interaction to depend upon u(x, 0) and v(x,O) when 
the reaction terms f(u,O) and g(0, v) are purely logistic. We note that 
such is not the case for (2.6)-(2.8) if (2.7) is replaced with 

f ( u )  = r u ( 1 -  K ) ,  

since then all nonnegative nontrivial initial data propagate to the 
spatially homogeneous equilibrium K. We note also that there are four 
basic outcomes to the attempt of the immigrant species to colonize the 
island in the face of competition from a second and somewhat more 
established species: coexistence; immigrant displacement of established 
species; survival of established species and failure of immigrant to 
colonize; and extinction of both species. In case u and v are both 
subject to zero Neumann boundary data, we take coexistence to mean 
that u and v are both asymptotically supported throughout the island in 
the sense we have previously described. (Should v be subject to zero 
Dirichlet boundary data, we modify the notion of asymptotically sup- 
ported in an appropriate manner so as to account for the fact that v 
vanishes at the edges of the island.) In the case of (2.16)-(2.18) or 
(2.16)-(2.19), it is no longer true that being asymptotically supported 
throughout the island is equivalent to convergence to a component-wise 
positive equilibrium. (See [14], for example.) However, a theory of 
upper-lower solutions applies to (2.16)-(2.18) and (2.16)-(2.19). This 
theory can be employed so as to derive lower bounds on solutions from 
equilibria in a manner similar to that for the single equation (2.6). (See 
Section 5 for a complete description of this phenomena.) 

We have already noted the discussion of Allee dynamics in [10]. We 
should note as well that Berryman and collaborators [15] use energy 
budget analysis to arrive at a growth rate curve of the same shape as 
(2.7). Other discussions of Allee dynamics are found in [8, 9]. The form 
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we take for the population density of the immigrant species at the 
cessation of immigration in both regimes of our first scenario has been 
influenced by [7], as previously acknowledged. We also pointed out that 
the formula for the population density over the transit corridor is 
essentially given in [3, p. 68]. The approach in [3] is more explicitly 
probabilistic. Indeed, it is important to recall that diffusion equations 
may be interpreted as descriptions of the development over time of 
probability densities. 

3. A SINGLE COLONIZING POPULATION--FIRST REGIME 

In this section we examine the behavior of the model (2.6)-(2.8) for 
single-species population dynamics on the island subject to the initial 
condition (2.3) induced by the dispersal of immigrants from the main- 
land. Recall that the basic model is 

u t = l Z U x x + f ( u ) ,  O < x < l , t > O  

Ux(O,t)  = u x ( l , t )  = 0  

with f ( u )  = ru(u - a ) ( K  - u), and that the initial condition is 

u ( x , O )  = K c e - ~  (x+L) 

If u ( x , O ) <  a then the solution to the ordinary differential equation 
w t = f ( w ) w i t h  w(0)= max u(x,0) is a supersolution to (2.6)-(2.8), and 
w ~ 0 as t ~oo. Thus, in this scenario, colonization always fails if 
u(x,0)< a on (0,l), which will be true if u(0 ,0)<a  since the initial 
density induced by dispersal from the continent is decreasing in x. Thus, 
colonization always fails if 

Kc e-  x/;U~L < a, 

which will be the case if L or rx~0//z 0 is too large. Establishing 
sufficient conditions for successful colonization requires more analysis. 

If we define F ( u )  to be the antiderivative of f ( u )  with F(0) = 0 then 
the expression 

i E ( t )  = - F ( u )  dx (3..1) 

is a Lyapunov function for the model in the sense of [13]. Computing 
E' ( t ) ,  integrating the first term by parts, and using the model yields 

l 2 E'(t) = - f u ,  
JO 
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It follows as in [13] that all solutions to the model must converge to the 
set of equilibria. Also, if we compute E for u = 0 we obtain E = 0; so if 
substituting the initial data into E yields E(0)< 0 then u cannot 
approach zero as t--,co and thus the model will predict successful 
colonization. (In general it is not clear which equilibrium u approaches 
if E(0)/> 0.) If we label the initial condition as Uo(X) then we have 
u0x = - V~0 //~0 u0. Thus, we have 

= r'[  .U x ] 
E(0) Jo[ 2 - F ( u ° ) ]  dr 

= 2 u°/X°x + F(u°)u°x ]dr 
rox/7---o--o--o--o--o--o-]~Uo 

=fudt)[-tX o/tXo F(u) ] 
"uo O  L 2 u + ~ u  du. 

(3.2) 

The last integral can and will be explicitly calculated. However, since 
the form of u 0 is somewhat complicated it is convenient to introduce 

some notation. Let z 0 = r0x/~o~ and M 0 = Kce- ~ L  = Kce-~oL. 
Then u 0 = Mo e-zox and computing the last integral in (3.2) yields 

E(O)=[( tzz2 +raK ) 4  ( X - e -  2zd)-r(a+ K) 

" +-~6(1-e-4Zot)M~]M2//Zo. (3.3) 

The question now is when does (3.3) yield E(0) < 0 so that successful 
colonization is predicted. (The case E(0) >/0 is inconclusive.) Obviously 
the expression depends on various parameters in complicated ways, so it 
is useful to consider how the expression varies as the parameters are 
varied in specific ways. Suppose that the size of the island is large; i.e., 
1 ~ ~. Then the sign of E(0) is determined by the sign of 

tzz 2 + raK r( a + K) M2r 
4 9 M° + 1----6-" (3.4) 

Recall that Mo=Kce-V/~j'oL. If we have Kc=K and set /3= 
e - ~  £ then Mo=K/3 with 0 < / 3 < 1 ,  / 3 ~ 0  as L ~ ,  / 3 ~ 1  as 
L ~ 0. If we have a = otK then the expression in (3.4) may be written as 

tzz24 + rK2 [or ( l + a ) / 3 +  ]/32 (3.5) 
- -  4 9 -]-6" 
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Thus, E(0) < 0 if rK z is large relative to /xz0 z and 

(1+  ~)/3 /32 
4 9 + ~ < o. (3.6) 

The inequality (3.6) will be satisfied when /3 = 1 (corresponding to small 
values of L or ~ 0  / ~0 ) provided a < 7/20;  so if K c = K, r is large, 
and a < (7 /20 )K  then a large island close enough to the continent will 
be colonized successfully. Also, for any /3 ~(0,1) ,  that is, for any 
distance from the continent to the island, colonization will succeed if 
the ratio a = a /K  of minimum viable population to carrying capacity is 
sufficiently small. If the island is small, we would want to examine what 
happens as l ~ 0. At l = 0, E(0) = 0, but we can calculate d(E(O))/dl at 
l = 0 to be 

ME [Izzz+raK r(a+K)M o r 2] 
2 3 + ~M6 • (3.7) 

If we again assume K¢ = K, and let a = aK, e-~°V 7U~°L =/3,  we have 
that the expression in (3.7) is negative for lZZ0 z small or rK 2 large if 

a ( l + a )  /32 
2 3 /3 + -4- < 0 (3.8) 

The inequality (3.8) will hold for /3 = 1 if a < 1, and for any fixed 
1 

/3 ~ (0,1) if a is sufficiently small. The condition a < ~ is natural, since 
E(0) < 0 for Uo(X) =- K only if a < ½; also, the model (2.6), (2.7) on an 
infinite interval supports a traveling wavefront going from 0 to K if a < 

1 but the wavefront goes from K to 0 if a > 7. If we let ~ 0  / /x0 ~ 0, so 
that the dispersal ability of our organism becomes arbitrarily good, we 
have for K c = K that M 0 ~ K and in (3.3) we obtain 

lim 
z0--* 0 

[aK (a+K)K ~_] 
E(O) =rK2l 2 3 + 

=rK41[ 2 _  ( l + a /  (3.9) 

1. which is negative if a < 7, so a sufficiently good disperser will colonize 
1 Finally, we note that if rK 2 is small or ~z02 is large successfully if ~ < 7. 

then we will never have E(0) < 0 for the case K c = K and meaningful 
values of the remaining parameters. This does not necessarily imply that 
colonization fails, but only that the Lyapunov approach is inconclusive. 
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A different way of determining conditions for successful colonization 
is based on the observation that if the initial data for our model is a 
local subsolution to the equilibrium problem then the solution to the 
t ime-dependent problem will increase toward the smallest global equi- 
librium lying above the local subsolution [6,12,16-18]. If our initial data 
lie above such a subsolution then the corresponding solution of the 
t ime-dependent problem will be bounded below by something that 
approaches a global equilibrium. Since all nonzero nonnegative global 
equilibria are strictly positive by the maximum principle, the interpreta- 
tion is that colonization is successful. We want to use local subsolutions 
of (2.6)-(2.8) satisfying 

gVxx+f(v)=O on (0,1o) 

= o 

v( lo) = 0  

(3.10) 

for some l 0 ~ (0, l). (These are strict subsolutions because of the bound- 
ary condition at 10.) In using such subsolutions we need only have our 
initial data bounded below by v on (0, l 0) to conclude that the equilib- 
rium our solution approaches is positive, and the behavior of the initial 
data for l 0 < x < I is irrelevant as long as it remains nonnegative. The 
point is that the density of colonists decays exponentially, so we cannot 
expect a high density over all of a large island; on the other hand, if a 
sufficiently high density is induced over part of the island that may be 
sufficient to cross the threshold for successful colonization. Construct- 
ing a suitable local subsolution for 0 < x < l 0 then allows conclusions to 
be drawn about colonization of any larger island at the same distance 
from the continent. 

A function v satisfying (3.10) on (0,l 0) and extended to be zero on 
(l 0, l) will be a subsolution for the model (2.6) with boundary conditions 
Ux(O,t)=O, ux(l,t)+bu(l,t)=O for any b > 0 ,  or even ux(O,t)=O, 
u(l,t) = 0. Thus, a conclusion of successful colonization based on com- 
parison of the density induced by dispersal from the continent with such 
a function v will remain valid under these less favorable boundary 
conditions. (The condition u(l,t)= 0 describes a situation where any 
individual crossing the seaward boundary of the island perishes immedi- 
ately.) Thus, conditions implying colonization on the basis of such a 
comparison will be robust with respect to the boundary condition at 
x = l. It turns out that solutions to (3.10) with the boundary condition 
v(0) = 0 can also be constructed; however, such a solution will have 
vx(l o/2) = 0 and so will require a total interval of support twice as long 
as that needed under the condition vx(0)= 0. The construction of a 
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solution with v(0) = v(l o) = 0 exploits the symmetry of the differential 
equation in (3.10) with respect to x about x = l 0 / 2  and yields a solution 
with the same symmetry properties, so that vx(l o/2) = 0. Alternatively, 
the solution can be constructed by setting v~(l o/2) = 0, v(l o/2) = v 0 
and varying v 0 in what amounts to a shooting method to achieve 
v(O) = v(l o) = 0. Such solutions would be relevant if we imposed bound- 
ary conditions u(O,t)= u(l,t)= 0 in (2.6). Such a modification would 
obviously cause quantitative changes in the conditions for colonization, 
but the qualitative features would not be changed. 

Solutions can be obtained for (3.10) by finding v satisfying the 
differential equation and the Dirichlet boundary conditions v ( - l  0) = 
v(l o) = 0. (This can be seen by letting w = v '  and examining the symme- 
try of the phase portrait.) Such solutions have been studied extensively; 
see, for example, [6,19]. It is observed in [6] that Eq. (2.6) (or (3.10)) has 
the first integral / z ( v ' ) 2 / 2 +  F(v) and that if 8 is such that F(8)> 0 
then there is a solution v 8 to tz"v +f (v )= 0, which is positive on 
( - lo , l  o) with maximum ~ at x = 0 (so that in fact v satisfies (3.10)) 
with 

to (8)  = ~l/-~-2-foa[F(8) - F ( s ) ]  -1/2 ds. (3.11) 

(There will exist ~50 E (a, K ) w i t h  F(8)> 0 for 8 ~ (~0, K)  if K > 2a.) If  

K c e - ~  (L +lo(~>~ > 8 (3.12) 

for some 8 with F ( 8 ) >  0 then u ( x , 0 ) >  8 t> v~(x) on (0,/0(8)) so that 
u(x,O) is bounded below by a local subsolution, and thus colonization 
succeeds if l > lo(8). It is worth noting that 10(8)= X/-;z-7-rll(8), where 
11 depends on 8,a ,  and K only, so decreasing X/-~/r decreases 1o(8). 
Also, if K c = K > 2a then (3.12) holds if r 0 ~ 0  is small enough. Of  
course (3.12) is sufficient but not necessary for colonization, and in fact 
in many cases may impose much too strong a condition. What  is really 

required is that K c e - ~ ( L + x > >  V~(X) on [0,10(8)]. In some cases 
sharper conditions may be possible, and we next illustrate one way in 
which they can sometimes be obtained. 

If  w satisfies w(0) = v~(0) = 8,w'(O) = v~(0) = 0, and w" >~ v~ it is a 
simple exercise in differential inequalities to show that w >~ v 8. We can 
find such a w for a given 8 if we can construct a function g(v) <~ f(v) 
on [0,8] such that if I~w"+ g ( w ) = 0  and w(0)=  8, w ' ( 0 ) = 0  then 
0~<w ~< 8 on  [0,ll(t~)] for some 11(8)>0.  To facilitate our specific 
construction we assume that 

a = aK with a ~< 1 /3 .  (3.13) 
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W e  can then  cons t ruc t  g(u)  f rom the  t angen t  l ines to  f ( u )  at u = 0 and  
u = a by def in ing g(u)  to  be  equa l  to  the  l a rge r  o f  the  two l ines  at  each  
point .  The  t angen t  l ine at u = 0 is the  g raph  of  y = - raKu; that  at a is 
the  g raph  of  y = r a ( K -  a ) ( u -  a). The  t angen t  l ine at  a in tersects  the  
g raph  of  y = f ( u )  at u = K -  a, and  for  0 ~< u ~< K - a  bo th  l ines lie 
be low the  g raph  o f  y = f (u) .  They  in tersec t  at  u = a(K - a ) / ( 2 K  - a). 
Thus,  we can t ake  

- raKu, 

g ( u )  = r a ( K - a ) ( u - a ) ,  

O < ~ u < ~ a ( K - a ) / ( 2 K - a )  

a ( K  - a ) / ( 2 K  - a) <~ u <~ K - a. 

(3 .14)  

If  (3.13) ho lds  then  the  in tegra l  o f  g(u)  f rom 0 to  K - a is posi t ive and  
so is F ( K -  a), so we can take  8 = K -  a. (This choice  is somewha t  
arbi t rary ,  bu t  it serves to i l lus t ra te  the  m e t h o d  o f  es t imat ion. )  F o r  ou r  
choices  of  6 and g we have for  x nea r  ze ro  

w"+ ( r / I x ) a ( K  - a )w  = ( r / l ~ ) a ( K  - a)a  

w ( O )  = K - a 

w ' ( 0 )  = 0 

so tha t  w(x)  = a + ( K - 2 a )  c o s ( ¢ ( r / I x ) a ( K -  a ) x )  unti l  x is large  
enough  tha t  w(x )  = a (K  - a ) / ( 2 K  - a), tha t  is, for  

0 <~ x <~ x o = ~ / ~ l ( r a ( K  - a ) )  c o s - ' (  - a K / ( ( 2 K  - a ) ( K  - 2 a ) ) ) .  

(3.15) 

W e  have w(x  o) = a ( K -  a ) / ( 2 K -  a), bu t  to f ind w(x)  for  x > x 0 we 
also need  w'(xo).  W e  have 

w' (  Xo) = - (  K - 2 a ) ~ / ( r /  tz)a(  K -  a ) s in(~/ (r /  Ix)a( K -  a) Xo), 

with 

K- a)Xo) 

= 5 1 -  a2K2 

V ( 2 K  - a ) 2 ( r  - 2 a )  2 

= 2 ( K -  a ) ¢ K  2 - 3 a K +  a 2 
( 2 K - a ) ( K - 2 a )  
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(By (3.13) K 2 - 3 a K +  a 2 > 0.) Thus, 

w,(Xo) = 2 ( K -  a) 1 / ( r / t x ) a ( K _ a ) ( K  2 _ 3 a K + a 2 )  
2 K - a  

Since w'(x  o) < O, w crosses below a ( K -  a ) / ( 2 K -  a) so that t z w " -  
raKw = 0, and hence 

w ( x )  = a( K - a) c o s h l / ( r /  i x ) a K ( x  _ x° ) 2 K - a  

2(2KK - -a)  1//( K - a)(  K 2 - 3aK + a 2 ) / K  

× s inh(1 / ( r / t z )aK ( x - Xo) ) (3.16) 

for x > x 0. It follows that w(x)  = 0 when x = x 0 + x 1, i.e., x - x 0 = x 1, 
such that 

( t a n h  -1 avrK ) . ( 3 . 1 7 )  x1 
21//(K - a ) ( g  2 - 3 a K n  t- a 2) 

(The expression inside the tanh -1 is less than one by (3.13).) From 
(3.15), (3.17), and the fact that vK_~(x)~< w ( x ) w e  have immediately 

lo( K - a) <~ x o + X 1 

= ~ [  K - ~ _ a  c ° s - l ( ( 2 K _ a ) ~ - - - K _ 2 a ) )  

+ - ~  " tanh-I  2 1 / ( K _ a ) ( K Z  3 a K + a  2) " 

In fact, by (3.13) 

0 >  
- aK  3 v~  

(2K - a ) ( K  - 2 a )  > - 5 >1 - --2- 

so x o < ~ 3 r q / t z / ( r a ( K - a ) ) / 4 ,  and also the terms corresponding to 
positive exponentials in (3.16) have negative coefficients, so that for 
x > x 0, keeping only the negative exponentials yields 

( K - a )  [ a + 2 1 / ( K _ a ) ( K 2 _ 3 a K + a 2 ) / K  ] w(x) a) 

× e x p [ - ~ / ( r / i x ) a K ( x -  x0) ] . (3.18) 
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Using these estimates we can give some fairly explicit conditions imply- 
ing successful colonization. We will have u(x,O)>1 VK_a(X) if U(x,O)>~ 
W(X), which will be true if u(x,O) >1 K - a on [0,x 0] and u(x,O) is larger 
than the expression on the right of (3.18) for x > r ~ _ .  Suppose K c = K 
and e ~  L = ft .  Then u(x,O) >1 U(Xo,O) = K f l e -  $/r°/lz°x° for x ~ [0,x 0] 
so u(x,O)> K - a on [0, x 0] provided that K/3 >/(K - a)exp r01/77~x0, 
which will hold if 

~>~(1-a )exp[3rr1 / ro tZ / (  la .orot (1-~))  / 4 K  ] . (3.19) 

If (3.19) holds then U(Xo, O ) > t K - a ,  and for x > x  ou(x ,O)= 
U(Xo,O)exp[ - V~o / t*o (x - Xo)], so u(x,O) >t w(x)  > VK_a(X) for x > x o 
if 

~ o  / tZo <~ 1/( r~ Ix) aK (3.20) 

and 

1 > / [ a + 2 1 / ( K -  a ) ( K  2 - 3 a K +  a 2 ) / K ] / [ 2 ( 2 K  - a)] .  

The last inequality is equivalent to 

l>~[ot +21//(1 - a ) ( 1 - 3 a  + oe 2) ] / 2 ( 2 - o r ) ,  

which will hold if (3.13) is satisfied, so (3.13), (3.19), and (3.20) imply 
successful colonization if K c = K. 

The conditions just obtained are not intended to be optimal; they are 
merely representative of explicit conditions that follow from estimation 
of the subsolution v~ defined by (3.10). 

4. INITIAL ISLAND P O P U L A T I O N  DENSITIES- -  
SECOND R E G I M E  

Recall that in Section 2 we describe two regimes for determining the 
density u(x, 0) of the immigrant species on the island at the cessation of 
immigration. In the first regime, we obtain the explicit formula 

u( x,O) = K c e - ~  )(x + L), 
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x ~[0,l],  while in the second regime, u(x,O) is the minimal positive 
solution to the problem 

-U,x=f(u) i n ( O , / )  

u (0) -- - v 

u (t) = 0 .  

(4.1) 

(4.2) 

(4.3) 

In (4.1)-(4.3), y > 0 is given by T = Kc (~--r-0it0)/Ite- ~ L  and 
f (u)  = ( r / I t ) u ( u  - a)(K - u) for 0 ~< u ~< K, where r, It > 0 and 0 < a < 
K. In the second regime u(x,O) is a strict upper solution for 

u t = ItUxx + f ( u )  in (0, l) × (0,oo) (4.4) 

Ux(O,t ) = 0 on (0,~)  (4.5) 

ux( l , t  ) = 0 on (0 ,~) ,  (4.6) 

where f (u )  = ru(u - a)(K - u). Consequently, the theory of upper and 
lower solutions for parabolic partial differential equations [6] guaran- 
tees that the solution to (4.4)-(4.6) starting at u(x,O) decreases mono- 
tonically with time and converges to an equilibrium solution to 
(4.4)-(4.6) as t ~ ~. If the equilibrium in question is nonzero (hence 
positive throughout the island by the maximum principle), it is reason- 
able to say that the immigrant species is successful at colonizing the 
island. Consequently, successful colonization of the island is tantamount 
to u(x,O) exceeding a nontrivial equilibrium to (4.4)-(4.6). Whether or 
not u(x,O) exceeds a nontrivial equilibrium to (4.4)-(4.6) depends upon 
the parameters in (4.1)-(4.3) and (4.4)-(4.6), most especially y and the 
ratio r~ It. To address this issue, it is necessary to analyze the structure 
of the positive solutions to (4.1)-(4.3) in terms of the parameters y and 
r / I t .  

To do so, we allow T to rangeover  all of ~ and r to be nonnegative, 
and define f (and hence also f )  outside the interval [0, K]. From a 
biological viewpoint only nonnegative values of T are of interest, but we 
must consider T < 0 as well to perform the necessary mathematical 
analysis. From a modeling standpoint, the crucial features of the popu- 
lation law are maintained whether f is extended in the obvious way (i.e., 
use the formula (2.7) for all u ~ R) or f is extended by 

- raKu, 

f ( u )  = ~n , (u  -- a)(  K -  u) ,  
[ - r K ( K - a ) ( u -  K ) ,  

u < O  
O < u < K  

u ~ K  
(4.7) 
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(i.e., extend f outside [0,K] linearly and smoothly). However, the 
mathematical analysis is facilitated if f is extended via (4.7), so that is 
how we extend f.  A complete account of the relevant analysis would 
likely require journal space sufficient for an entire article and would be 
of independent mathematical interest. In this article, however, our 
interest is in the ramifications of the analysis for island colonization. 
Consequently, we present only an overview of the analysis, with a focus 
on those aspects most directly relevant to the issue at hand. 

Note to begin with that for any r~ Ix ~ O, (4.4)-(4.6) has the spatially 
homogeneous equilibria 0, a, and K. There may or may not be addi- 
tional, spatially heterogeneous positive equilibria. In case there are no 
spatially heterogeneous positive equilibria for (4.4)-(4.6), 3' > 0 must be 
such that u(x,O)>~ a throughout the island in order for the immigrant 
species to succeed at colonization. (Otherwise, 0 is the only nonegative 
equilibrium below u(x,O).) What we see is that for r~ Ix small enough, 
(4.4)-(4.6) admits only homogeneous equilibria and that for such 
r / i x ,  u(x,O)>~a throughout the island for 3' sufficiently large. More- 
over, we quantify explicitly how small r~ tz needs to be (in terms of K 
and a), and also how large 3' needs to be (in terms of K, a and r~ Ix). 
As r / I x  increases, spatially inhomogeneous equilibria to (4.4)-(4.6) 
occur and the requirement u(x,O)>~ a throughout the island for suc- 
cessful colonization can be relaxed. 

Let us now give a summary of facts concerning the minimal positive 
solutions to (4.1)-(4.3), where now f (u)  is defined for all u ~ ~ via (4.7). 

THEOREM 4.1 

For any T > 0, (4.1)-(4.3) admits a minimal positive solution, denoted 
uv and having the following additional properties: 

(a) If  0 < 3'~ < 3'2, uy, < uy 2 on (0,1). 
(b) For any 3'1 > 0, limr _~ ~; u~ = u~l- 
(c) l f  u v >i a on [0,1], then u~ >1 K on (0,I). 

The existence of a minimal positive solution to (4.1)-(4.3) for 3" > 0 
follows from the fact that 0 is a strict lower solution, as noted in Section 
2. Property (a) holds since uv2 is a strict upper solution to (4.1)-(4.3) for 
3' = 3"~. This property tells us that if the immigrant species is successful 
in colonizing the island when 3' = 3"1, it will be successful when 3' = 3'2. 
Consequently, increasing the diffusion rate Ix0 across the transit corri- 
dor or decreasing the diffusion rate Ix on the island enhances the 
prospects for colonization. Property (b) is essentially a consequence of 
the Ascoli-Arzela theorem. (See, for example, [20, Sect. 1].) The last 
property, (c), tells us that in our second regime if the population density 
of the immigrant has been driven above the uniform minimal viable 
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density, it is in fact above the carrying capacity. This fact is a conse- 
quence of the inhomogeneous boundary data and the Allee-type dynam- 
ics. Observe that u'v(0) = - 3' < 0, so that u~,(x) < ur(0) for small values 
of x. So if u v >/a on (0, l), u~(0) > a. If  u~(O) <<. K,  u"~(x) = - f ( u ~ ( x ) )  < 

t 0 for small values of  x. Thus uv and uv both decrease for small values 
of x and continue to do so as long as u v remains larger than a. If  u~ 

t reaches a for some x c [0 , l ] ,  then u v ( x ) <  0, so that u~ fails to satisfy 
the boundary condition (4.3) if x = l and dips below a if x < l, either of  
which is a contradiction. So u , ( 0 ) >  K. Either uv >t K for all x ~ [0,l] or 
there is xl ~ [0 , l ]  with u v ( x l ) <  K. In this last case, there must be a 
largest x 0 < x 1 so that uv (x  o) = K. Since (uv(x 1 ) -  u v ( X o ) ) / ( x  I - x o) < 

t 0, the mean value theorem guarantees x 2 ~ (Xo,X 1) so that uT(x 2) < 0 
t and uv (x  2) < K. Then, as before, uv and uv decrease for x > x2, forcing 

uv below a or a failure to meet  (4.3). The only possibility is that uv >1 K 
on [0, I]. 

We next must augment the preceding description of the set of 
minimal positive solutions to (4.1)-(4.3) for 3" > 0. Let C2[0,1] denote 
the Banach space of twice continuously differentiable functions on [0,1] 
with the usual norm II II, given by 

Ilull= max l u ( x ) l +  max l u ' ( x ) [ +  max lu"(x)l, 
x • [0,1] x • [0,1] x • [0,11 

and fix r ~  tx > O. 

THEOREM 4.2 

Le t  ~ denote the connected component  o f  {(y, u) ~ ~ x cz[0, l] :(3", u) 
solves (4.1)-(4.3) with u >I 0} containing (0,0). Then ~ has the following 
properties: 

(a) (0, K )  ~ ~ .  
(b) There is a u ~ C2[O,l] with u -4= K and u v s 0 so that (O,u) ~ ~'. 
(c) There is a 3'o < 0  so that i f  ( 3 " , u ) ~ , 3 "  >~ 3"o- 
(d) There is a 3"1 > 0 so that ~ contains the arc ~" given by 

= { ( o , o ) }  u :o  < < 

(e) There is a 3"2 < 0 SO that ~ contains an arc {(y,~(y)) :  y > 3"2}, 
where ~(0) - K and ~ ( y )  > K on (0, l) for  3' > O. Moreover, there is a 
Y3 > 0 so that ~ ( y )  = uv for  y > Y3. 

Theorem 4.2 provides a general description of how the two stable 
homogeneous equilibria to (4.4)-(4.6) (namely u-= 0 and u-= K )  are 
linked together through spatially heterogeneous positive solutions of  
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Ilull 
/ -  
K 

B 

0 

FIG. 4.1. The simplest possible form for the continuum ~ of positive solutions 
corresponding to a positive flux of immigrants into the island is illustrated schemati- 
cally. In this case colonization fails if 3' < ~ and succeeds if ~/> ~,. The parameter 3, 
effectively represents the rate at which immigrants arrive at the island, which will 
naturally depend on biological and geographic factors as described in the text. 

(4.1)-(4.3) as the flux parameter subsequently increases and decreases. 
(See Fig. 4.1.) By increasing 3' from 0, the zero equilibrium at 3' = 0 is 
deformed into the minimal positive solutions for (4.1)-(4.3) (i.e., the 
population densities of the immigrant species at the cessation of immi- 
gration) for some range of 3". For  3" sufficiently small, these minimal 
solutions are necessarily less than a throughout (0, l) and the immigrant 
species fails to colonize. By (b), (c), and (e), the arc of minimal positive 
solutions to (4.1)-(4.3) emanating from (0,0) is connected to (0, K)  by 
first passing through a positive solution when 3, = 0 other than 0 or K. 
It may or may not be the case that this solution is a, the other 
homogeneous equilibrium at 3' = 0. Note also that the arc emanating 
from (0,0) is necessarily connected to positive solutions to (4.1)-(4.3), 
which are not minimal positive solutions. By (e), the equilibrium u - K 
at 3' = 0 can by increasing 3' also be continuously deformed into 
spatially heterogeneous positive solutions of (4.1)-(4.3), all of which 
exceed K on (0,1). Moreover, solutions along this arc are for 3' large 
enough the minimal positive ones (i.e., ur's). 

A ramification of Theorem 4.2 is that there is at least one break in 
the graph {(3', u~ ) :y  > 0}. Indeed, from Theorem 4.1 (b)-(c), there must 
be a critical value ~ > 0 so that u.~(x)< a for some x ~ [0,l] while for 
3' > ~/, uz,(x)> K for all x ~ [0, l]. Consequently, when the flux parame- 
ter 3" crosses the threshold value 7, the immigrant species tends to its 
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carrying capacity on the island (i.e., K) after the cessation of immigra- 
tion. The immigrant species is then clearly successful at colonization. 
Moreover, if 0, a, and K are the only nonnegative equilibria to 
(4.4)-(4.6) the threshold valve ~/ is the demarcation point between 
unsuccessful (3" ~< ~/) and successful (3' > 9)  colonization. 

The proof of Theorem 4.2 is somewhat complicated, its essence an 
appeal to the global implicit function theorem of Alexander and Yorke 
[21], at the point (0, K). Part (e) guarantees that the continuum ~' 
through (0,K) is unbounded. As a result, it follows from [21] that 

-({(0, K)} u{(3", ~(3')): 3' > 0}) must also be unbounded. The a priori 
bound given in part (c) and the maximum principle together assert that 

- ({(0, K)} U {(3', ~(3")): 3" > 0}) can be unbounded only if (0, 0) ~ ~ .  
Parts (d) and (e) are consequences of the classical (local) implicit 
function theorem, while the a priori bound in (c) is a consequence of 
upper and lower solution methods. We prove (c) and (e). The proof of 
(d) is similar to that of (e) and is omitted. 

Proof. (Theorem 4.2(c)). It follows from (4.7) that 

rKZ( K -  a) r 
f ( u ) ~  K ( K - a ) u  IX tx 

for all u ~ ~. Consequently, if u is a positive solution to (4.1)-(4.3) for 
some 3' < 0, then u is a lower solution to 

- w" r K 2 ( K -  a) r 
= t t  - - ~ K ( K  - a)w 

w ' ( 0 )  = 13"1 

w'(t) =o.  

on (o,t) 
(4.8) 

K or any larger constant is an upper solution to (4.8). Since 

cosh(~l( r /  tx)( K) (  K - a) (l - x) ) 

w= K - l Y I  (~/(r/  I~)( K) (  K -  a ) )sinh(1/(r/ l~)( K) (  K -  a) l ) 

is the unique solution to (4.8), it follows that u can be positive on (0, l) 
only if w is. When 

ITI > K ¢ ( r / t z ) K ( K  - a) s i nh (¢ ( r / t x )K(K  - a) 1) 

K -  a) Z) 
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w ceases to be positive throughout (0,I). So there can be no positive 
solution (4.1)-(4.3) if 

- K~/( r/IX)( K)( K -  a) sinh(1/( r/IX)( K)( K -  a)l)  
3' ~< cosh(~/( r~ IX)K( K - a) l) 

Proof. (Theorem 4.2(e)). Let W denote the subspace of C2[0,1] 
consisting of those functions w with w'(0) = 0 = w'(l). Define F: W x 
R ~ C[0,/] by F(w, 3') = w"+ yh"+ f (w  + 3"h), where h(x) = c o s h ( / -  
x) / s inh l .  Note that h ' ( 0 ) = - 1  and h ' ( l ) =  0, so that F ( w , y ) =  0 is 
equivalent to w + 3"h solving (4.1)-(4.3). Observe that F(K,O) = f ( K )  = 
0 and that (aF/Ow)(K,O)u = v"+ f ' ( K ) v .  Since c ' ( 0 )=  0 = v'(l) and 
f ( K )  = - ( r  / IX)K(K - a) < O, ( OF / Ow)(K,O)v = 0 implies v - 0. As a 
result, the implicit function theorem implies that there is a smooth 
function w(3") defined in a neighborhood of 3" = 0 with w(0) = K so that 
the solution set to (4.1)-(4.3) near (0 ,K)  is given by {(3",w(y)+ 3"h): 3' 

( -  6, 6)} for some 6 > 0. It is a simple matter to calculate that for 
y ~ ( -  6, 6), zv = (Ow/O3") satisfies 

z~ + h"+ f ' (w(3")  + 3"h)(z v + h) = 0 

in (0,1) with (zv + h)'(0) = - 1 and (zv + h)'(1) = 0. When 3, = 0, w(3")+ 
3'h = K. Hence 

z 0 + h =  
cosh'J( r /  ix)K( K - a) (1 -- x)  

1 / ( r /  tx)K( K -  a) sinh(~/( r~ IX)K( K -  a )1 ) '  

which is positive on (0, I). So there must be 6 < 6 so that zv + h > 0 on 
(0,l) for 3, ~ (0, 3). Consequently, w ( y ) +  3"h is initially increasing with 
respect to 3', so that w(3")+ 3'h > K for 3" ~ (0, 6). Then f- '(w(3')+ 3"h) 
= - ( r / IX )K(K  - a) for all x ~ (0, l) and 3, ~ (0, 6), by (4.7). Hence 

z v + h =  
cosha/(r /  ix)K( K - a) (1 - x)  

1/( r / IX) K(  K - a) sinh 1/(r / IX) K( K - a) l 

for all y ~[0 ,6] .  It is now easy to see that ~ ( y ) =  w ( y ) + y h  can be 
extended for all 7 > 0 in such a way that u(7)  is a solution to (4.1)-(4.3) 
with ~ ( y ) >  K on (0,l), because the foregoing arguments may be 
repeated arbitrarily. 
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Suppose now that for some y > 0, (4.1)-(4.3) admits two solutions 
greater than or equal to K on (0,l), and denote them by Ul, and u 2. 
Then (u I - u2)"+ f ' (O(x )u l ( x )+(1  - O(x))u2(x))(u I - u 2) = 0 on (0,l) 
and (u 1 - u2)'(0) = 0 = ( u  1 - u2)'(1), where O(x) ~ [0,1]. Since O(X)Ul(X) 
+ ( l  - O(x))u2(x) >1 K, f ' ( O ( X ) U l ( X ) h - ( 1  --  O ( x ) ) u 2 ( x ) )  = - ( r /  ~ ) K ( K  
- a) < 0 hence u~ - u 2 = 0. Consequently, if u v >/K on (0,l), u r = ~(3'). 
We give a lower bound on u r in Proposition 4.4, which establishes this 
last fact and completes the proof of Theorem 4.2. 

We can make the ramifications of Theorems 4.1 and 4.2 for immi- 
grant species in the second regime more precise by obtaining some 
quantitative estimates. The first estimate is on the values of ( r / I x )  for 
which (4.4)-(4.6) admits only the spatially homogeneous equilibria 0, a, 
and K. A condition ruling out spatially inhomogeneous equilibria is 
obtained by using Sturm-Liouville comparison theory. A condition 
implying the existence of spatially inhomogeneous equilibria can be 
obtained from (4.1)-(4.3) when 3' = 0 by making the transformation z = 
u - a in the dependent variable and using bifurcation theory (along the 
lines of [22]) to analyze the resulting boundary value problem. So doing, 
we obtain the following result. 

THEOREM 4.3 

Consider (4.1)-(4.3) with 3" = 0 and r / ~ > O. Then: 

(a) Equations (4.1)-(4.3) admit only the three spatially homogeneous 
solutions O, a, and K provided 

r1 2 2 I -~-~<min aZl2, ( K _ a ) 2 1 2  . 

(b) Equations (4.1)-(4.3) admit at least 2n spatially heterogeneous 
positive solutions when 

r n2-a "2 
> 

tz a( K - a) l  2" 

The spatially heterogeneous solutions to (4.1)-(4.3) whose existence 
is asserted in (b) represent nonconstant equilibria for (4.4)-(4.6). Any 
such solution, say u*, has the property that u* oscillates around a a 
finite number of times on (0, l). Since a is the minimum uniform viable 
density for the immigrant species, the existence of a u* allows the 
possibility of successful colonization when the density of the immigrant 
species u(x, 0) at the cessation of immigration in the second regime fails 
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to exceed a throughout the island. Theorem 4.3 (b) asserts that such 
solutions are available when the ratio ( r / I t ) >  7 r 2 / a ( K -  a)l 2, but not 
if ( r / i t )  <<. min{zr2/aZl 2, ~r2/(K - a)212}. In general,  min{~'2/  
aZ12,1r2/(K - a)2l 2} < ~r2/a(K - a)l 2, so there is a gap in the values of 
r / i t  where we can at present determine whether or not (4.4)-(4.6) 
admits nonconstant equilibria. However, if K = 2a, zr2/a2l 2 = zr2 / (K 
- a ) 2 1 2 =  zr2 /a(K - a)l 2 and there is no such gap. Recall from the 
discussion following the statement of Theorem 4.2 that there is a critical 
value 7 of 3' so that the solution to (4.4)-(4.6) with u ( x , 0 ) =  uv(x) 
tends to the carrying capacity for the immigrant (i.e., K)  precisely when 
3' > 7- An important consequence of Theorem 4.3 is that provided 
( r / i t )  <<. min{7"r2 / a2l 2, 7r2 / (  K - a)2/2}, colonization is successful only 
when y > 7. (This is because if 0, a, and K are the only equilibria for 
the homogeneous problem (2.6)-(2.8) then the only initial data uv that 
can avoid tending toward zero as t ~ oo are those with uv > a and hence 
uv > K.) 

Our second estimate is an upper bound on the critical flux parameter 
7- To obtain the estimate we first need the lower bound on uv given in 
the following result. 

PROPOSITION 4.4 

Let r~ It andy > 0 be fixed. Let uv denote the minimal positive solution 
to (4.1)-(4.3). Let A = max{a, K - a}. Then 

u 7 
y cosh(~/( r / / . t )  KA ( l -  x) )  

>~ 
1/( r /  i t )KA sinh(~/( r /  i t )KA l) 

>1 
~ / ( r / i t ) K A  s i n h ( ¢ ( r / i t ) K A l ) "  

Proof. Note that f ' ( u ) > ~ - ( r / i t ) K A  for all u by (4.7). For any 
z > O , f ( z ) / z = ( f ( z ) - f ( O ) ) / ( z - O ) = f ' ( Y . ) ,  where 0 < i < z  by the 
mean value theorem. As a consequence, u v is an upper solution for the 
problem 

- w"  = - (  r /  i t ) K A w  

w ' ( O )  = - 

w'(l) =0.  

on (0,1) 

(4.9) 

As 0 is a lower solution to (4.9), the proposition follows from the fact 
that (4.9) admits a unique solution. 



92 R.S. CANTRELL ET AL. 

We know from Theorem 4.1 (c) that uy >~ K whenever uy >/a and in 
that case the immigrant species tends to K long term following the 
cessation of immigration. Proposition 4.4 implies 

u~ >~a 3' 
if ~/(r/lz)Ka sinh(~/(r/ix)Kal) >>.a. 

Hence ~ < a~/(r/tz)Ka sinh ~/(r/l~)Ka 1. We have the following r e -  

suit. 

THEOREM 4.5 

Let A = max{a, K - a} and suppose that 

Then if the density of the immigrant species upon cessation of immigration 
is determined through the second regime, the immigrant species tends to its 
carrying capacity asymptotically following the cessation of its immigration. 

Observe now that the expression 

T cosh(~/ ( r / /~)K(A)  ( l -  x)) 

~/(r/tz)KA sinh(~/(r/~)KAl) 

bounding u~, from below in the statement of Proposition 4.4 is a 
decreasing function of x on (0, l), as is the expression Kce- (~0/~,0)(x+0 
for the density of the immigrant species at the cessation of immigration 
in the first regime. Consequently, if 

f f (r /  lz)KA sinh(~/(r/ l~)KAl) 
< a <  

7 coth(~/(r/ tz)KA l) 

the lower solution approach to successful colonization described in 
Section 3 is in principle applicable in the context of our second regime. 
In this setting the condition (3.12) for successful colonization becomes 
10(8) < l and 

T cosh(vt(r/beKA) ( l - lo (8) ) )  

f f (r /  lx)KA sinh(4(r/ Ix)KAl ) 
> 8, (4.10) 



MODELS FOR A SPECIES COLONIZING AN ISLAND 93 

where lo(8) is as given in (3.11). We do not pursue this line of inquiry 
further at this time, but we do believe it worthwhile to point out the 
availability of such techniques for our second regime in cases in which 
u.y(x) < a for some but not all values of x. 

We know that if (r//tz)<,. min{Ir2//aEl2,TrE//(K- a)212}, then the 
immigrant species will not be successful at colonizing the island if 3' is 
such that (y ,u  v) lies on the initial arc ~ of minimal solutions to 
(4.1)-(4.3) emanating from the solution (0,0) as described in Theorem 
4.2(d). It follows as in our proof of Theorem 4.2(e) that (y,  uv) lies on 
as long as f ' (u  v) < 0. (In this case the local implicit function theorem 
remains applicable.) Since f (u)  = (r / t z )u(u  - a)(K - a) for u ~ [0, K], 
f ' (u)  = (r//I~)( - 3u 2 + 2(a + K)u - aK). It is now easy to observe that 
f ' (u)  is increasing on [0, (a + K) /3 ] ,  and hence that f ' (u )  < 0 on [0, a / 3 ]  
since f ' ( .a /3 )= ( r / l z ) ( ( a 2 / 3 ) - ( a K / 3 ) ) <  0. As a consequence, (y,  ur)  
lies on ~ and the immigrant's attempt at colonization fails if 

--~ ~< min a212 , ( K - - a ) 2 l  2 and uv <<. a / 3 .  

Our third and final estimate is on a value ~/ so that u~ ~< a / 3  provided 
0 < 3' ~< ~/. Observe that >/0 for uv f ' ( uv )  <~ a /3 ,  so that the graph of 
f (u )  lies below the secant line joining (0,0) to (a//3, f(a//3)). Conse- 
quently, uv is a lower solution for 

- w " = ( / ( a / 3 ) / ( a / 3 ) ) w  o n ( 0 , / )  

w'(O) = - Y  (4.11) 

w'(l)  =0 .  

Thus we may make the comparison u~, <..w<..a//3, so long as the 
solution w to (4.11) does not exceed a /3 .  Now 

/ ( a / 3 )  
0//3 = - ( - ~ ) ( 2 ) a ( 3 K - a ) = - Q 2 .  (4.12) 

Using (4.12) and solving (4.11) for w yields 

w ( x )  = Y[eQx + e2Qte-OX] 
Q[e zQl - 11 (4.13) 
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From (4.13), 
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w' (x )  = Y[eQx-- ea¢2l-~)] < 0 
e 2ol - -1  

on [0,/] .  

Thus 

y[ e2Ql + l ] y 
w(x) 4w(O) Q[e2Qt-1] - Qtanh(Ql) " 

It follows that ur ~< a / 3  provided that 

y <~ 3Qtanh(Ql) 

a 1 =-qvf-r--~tx~/2a(3K-a) tanh (-5 g ~ - ~ )  - - 1 / 2 a ( 3 K - a )  l). (4.14) 

Hence if r/i.t<~min{Ir2/a2lZ,~r2/(K-a)2l 2} and y satisfies (4.14), 
the immigrant species fails to colonize the island in our second regime. 

5. COLONIZATION WITH COMPETITION 

We have so far considered conditions that ensure that a single 
immigrant species from a continent will successfully colonize an island. 
What happens, however, if there are other species already established 
on the island, as is likely to be the case in the formation of island 
communities? There are obviously fundamental questions to be asked: 
Will the invasion lead to coexistence, or to the elimination of an 
established species, or perhaps to the failure of the invading species to 
establish itself? In the case of two competing species the method of sub- 
and supersolutions may be used to draw some interesting conclusions. 
Recall that the model for this situation is (2.16), 

u, = ~Uxx + f ( u , v )  

v, = VVxx + g ( u , v )  

with f ,  g competitive interaction terms, that is, with Of/Ov, Og/Ou < 0 
for u,v >0. As before, the variable u denotes the density of the 
invading species, and v denotes the density of the previously established 
species. We assume f(O,v) = 0 and g(u,O) = 0. The method of sub- and 
supersolutions can be applied to models for two competing species in 
much the same way as for a single species, but does not extend simply 
or directly to models with more than two competitors present. For two 
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competitors, the appropriate sort of comparison principle uses a sub- 
/supersolution pair. Let Bu define the boundary condition on u and By 
that on v; these may be either of Dirichlet or Neumann type, i.e., 
Bu[w] = w or B,[w] = 3 w / S n  with n the outward pointing normal. A 
sub-/supersolution pair in the classical sense is a pair of smooth 
functions (u, ~) satisfying 

u t <<. lXU xx + f ( u, -~ ) 

F t>l VGx + g ( u , ~ )  

Bu[u] 0, 

on (0,1) X (0,oo) 

for x = 0 , l .  

(5.1) 

The key result, stated in the form most convenient for the present 
purposes, is as follows: 

THEOREM 5.1 

Suppose that (u ,v)  satisfy (2.16) with boundary conditions Bu[u] = O, 
By[v]= 0 at x = O,l as in (2.17) and (2.18) or (2.19), and that (u,-~) 
satisfy (5.1). I f  

u(x,O) <~ u(x,O) and "fi(x,O) >I v(x,O) (5.2) 

then 

u ( x , t )  <<. u ( x , t )  and -fi(x,t) >~ v ( x , t )  (5.3) 

for all t > O. A corresponding result holds with the inequalities (5.1)-(5.3) 
reversed. 

The classical formulation of Theorem 5.1 is given in [23,24] and was 
used to study a Lotka-Volterra system in [25]. The condition that u and 

should be smooth may be removed, giving a considerable increase in 
the power of the technique. In a biological context a convenient 
reference is [16,17] and a description of the use of weak sub-/super- 
solutions is given in [18]. The rough idea is that the local maximum of 
two smooth subsolutions together with the local minimum of two 
smooth supersolutions is again a sub-/supersolution pair. For a full 
description the reader may consult the above references. This idea is 
used freely in what follows. 

In our discussion of competition between immigrant and resident 
species we usually suppose that the resident species with density v has 
become established on the island and that the immigrant species with 
density u diffuses from the mainland. We imagine that the distribution 
of u, obtained for example from (2.3), gives the initial distribution for u 
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in the model (2.16) and that boundary conditions (2.17) and (2.18) or 
(2.19) are satisfied. This is obviously an oversimplification and it may be 
unrealistic to suppose as in (2.17) that once the migratory species 
arrives on the island it remains there. However, these assumptions 
permit a reasonably simple analysis and focus attention on the ability of 
the invading species to survive. The more complex assumption that 
there is a continuous stream of immigrants interacting with the environ- 
ment and the established species via an inhomogeneous boundary 
condition could perhaps be treated as in the single-species model 
discussed in Section 4, but only at the expense of extra technical 
difficulties. Similarly, the Neumann boundary condition Ux(O,t)= 
ux(l,t) = 0 in (2.17) could be replaced with a Dirichlet condition or 
something more general, but again that would complicate the analysis, 
and if we use homogeneous boundary conditions it is not obvious which 
sort is the most realistic. 

The four possible outcomes are that the immigrant species will 
displace the resident species, that it will be unable to invade, that 
coexistence between the two species will develop (possibly but not 
necessarily in a stationary state), or that both will become extinct (a 
possibility only if Allee effects are present, and generally the least 
plausible of the possibilities). If we enquire which of these will come 
about, the answer will clearly depend in general on several factors: the 
nature of the interactions f and g, the diffusion coefficients ~ and v, 
the size of the island, and the boundary conditions, as well as the initial 
distribution, which at least in the case of the migrant species may itself 
depend on several factors as in (2.3). Thias, although in some situations 
results of interest may be obtained in which some of these factors do 
not play a role, in general simple results cannot be expected. 

The simplest type of result, applicable only when both species satisfy 
zero Neumann boundary conditions, uses solutions of the reaction 
system (i.e., the corresponding system of ordinary differential equations) 
as comparison functions. Note that this class of result does not depend 
on /z, v, or I. Let p( ~:, -q, t), q( ~, ,/, t) be the solution of the system 

c/p 
d---{ = f ( P ' q )  

dq 
d---{ = g( P 'q )  

(5.4) 

with p( ~:, ~, 0) = ~, q( ~, ~7, 0) = r/. Then a direct application of Theorem 
5.1 yields the following result: 
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THEOREM 5.2 

Suppose that (u, v) satisfy (2.16)-(2.18). Assume that there are nonneg- 
ative constants a, b, c, d such that a <<. u(x, O) <~ c and d <<. v(x, O) <~ b. Then 
f o r t > O ,  

p (  a, b , t )  <~ u( x , t )  <<. p (  c , d , t )  

q(  c , d , t )  <<. v( x , t )  <~ q( a , b , t ) .  
(5.5) 

The lower bound on u and upper bound on v follow from Theorem 
5.1 with u = p ( a , b , t ) , - g = q ( a , b , t ) ;  similarly ~ = p ( c , d , t )  and __v= 
q(c, d, t) yield the upper bound on u and lower bound on v. 

When applicable this result provides rather simple answers, for the 
solutions of (4.1) are often well known qualitatively and of course the 
actual orbits are easy to compute numerically. We start for illustration 
with a relatively easy case and assume that the interactions are of 
Lotka-Vol ter ra  type, that is, 

f ( u , v )  = rl(1 - u / K  1 - c q v / K , ) u  and 

g ( u , v )  = r2(1 - ol2u / K 2 - v / K2)v ,  

as described in Fig. 5.1. 
If the system (5.4) has a unique equilibrium P, which is a global 

attractor for solutions that are initially positive in both components, 
then all nonzero nonnegative initial distributions in the diffusive model 
(2.16)-(2.18) will eventually lead to constant distributions with values at 
the equilibrium. This follows from Theorem 5.2 after using the maxi- 
mum principle to show that any nonzero nonnegative initial distribution 
is strictly positive for t > 0. (The case where there is a stable coexistence 
equilibrium is shown in Fig. 5.1a.) In this situation, the details of 
geography and history are irrelevant to the outcome of the interaction. 
In the bistable case (Fig. 5.1b), the equilibria E 1 =(K1,0)  and E 2 = 
(0, K 2) are both locally stable and the final state of the system depends 
on the initial conditions and hence on accidents of geography and 
history. If neither species is present initially, then either can successfully 
colonize the island in the absence of the other from a continent at any 
distance, since if only one species is present it will satisfy a diffusive 
logistic equation for which all solutions with nonzero nonnegative initial 
data eventually approach the carrying capacity. On the other hand, if 
the island is distant from the source populations of both species then 
the initial densities induced via immigration as in (2.3) will be quite 
small, so that if either species is present at carrying capacity then the 
other cannot successfully invade. Finally, if the continental source of 



98 R. S. CANTRELL ET AL. 
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FIG. 5.1. The reaction phase planes for two classes of Lotka-Volterra interac- 
tions are shown. The solid (respectively open) circles represent stable (respectively 
unstable) equilibria. (a) All orbits starting in the interior of the positive quadrant 
approach P as t approaches infinity. (b) The bistable case with two stable states E 1 
and E2, P being unstable. The stable and unstable manifolds of P are shown 
schematically as broken lines; all orbits starting above (respectively below) the stable 
manifold approach E 1 (respectively E 2) as t approaches infinity. If the resident 
species is at or near its carrying capacity and the initial density of the colonizing 
species is sufficiently high then it may be possible for the colonist to displace the 
resident. That scenario would occur in the case of the system shown in (b) if the 
initial data for the system were to lie in the shaded rectangle R. 

one  species is close to the island, then  it may  somet imes  be possible for  
that  species to displace the resident  species. In  part icular ,  if the resident  
species v is at equi l ibr ium E 2 we may  take  b = d = K  z, and the 
immigrat ing species u will displace the resident  v if the m i n i m u m  

K1 e -  ,ox/;-o7~otL +t) of  u(x,O) is to the right o f  the point  where  a horizontal  
line through E 2 cuts the stable manifo ld  of  the unstable  equi l ibr ium P 
with bo th  species p resen t  (see Fig. 5.1b). Thus,  in the bistable case, 
history a n d / o r  geography  may  play a role in the ou tcome  of  the 
interaction.  

In pract ice the  assumpt ion  that  the interact ions are  of  L o t k a -  
Vol te r ra  type is likely to be  a gross oversimplif icat ion.  Once  advantage  
of  a rguments  based  on compar i sons  with the ordinary differential  
equat ions  (5.4) is that  they may  readily be  appl ied when  m o r e  e labora te  
assumpt ions  are made .  I f  bo th  species exper ience  on Allee effect  [8-10] 
as was assumed in the single species case one  possible conf igurat ion of  
the phase  p lane  is shown in Fig. 5.2. 
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FIG. 5.2. The reaction phase plane when there is an Allee effect in both species is 
shown. There are several equilibria, the convention regarding stability being the 
same as in Fig. 1. Orbits starting in the sector bounded by the manifolds EFF* and 
EGG* will approach P. Thus, if the initial data are in the rectangle with comers 
(a,b) and (c,d) then the corresponding solutions will approach P. 

Orbits of (5.4) starting in the sector with sides E F F *  - E G G *  will 
tend toward the stable equilibrium P. With a , b , c , d  as shown in the 
figure, indicating immigration from a continent relatively close to 
the island, Theorem 5.2 implies that the initial densities will approach 
the equilibrium P and coexistence will ensue. However, the situation is 
different from the case of Lotka-Vol ter ra  interactions with a stable 
coexistence equilibrium, since the equilibria 0, E 1, and E 2 in Fig. 5.2 
are all now locally stable. For  colonization to succeed the initial density 
of the immigrating species must therefore be sufficiently large. Hence, 
even though stable coexistence is possible the presence of Allee effects 
means that either or both species may fail to successfully colonize the 
island if the source populations are too far away from the island. Thus, 
with Allee effects, the geography and history of the system may play a 
role in determining the eventual outcome even if the competitors can 
coexist. 

The conditions under which Theorem 5.2 is applicable are rather 
restrictive. First, the boundary conditions on both species must be of 
no-migration type. Second, the sub-/supersolution pairs must be spa- 
tially constant and lie be low/above the initial distributions. If the 
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immigrating species has initial density u(x, 0) given by (2.3) then for any 
given constant a there will be values of x with u(x,O) < a if the island is 
sufficiently large, and Theorem 5.2 is not applicable. Also, if the 
dynamics are as in Fig. 5.1b and the rectangle [a,c]x[d,b] crosses the 
stable manifold of P then Theorem 5.2 is vacuous. Our next aim will be 
to find criteria leading to coexistence in the presence of Allee effects as 
in Fig. 5.2. Our approach will be in the spirit of the subsolution 
arguments used for the single-species case in Section 3. 

One plausible scenario (from the many possibilities) is that a resident 
species may have evolved reduced dispersal abilities. This possibility is 
described by Darwin in The Origin of the Species, Chapter 5 (The Laws 
of Variation) with regard to beetles inhabiting the island of Madeira 
and appears to be a not uncommon feature of island species [3, Chap. 
2]. In our models such a scenario could be interpreted as reducing the 
diffusion rate and making the sea surrounding the island lethal to the 
resident population. Thus we assume that the resident species satisfies 
the homogeneous Dirichlet boundary condition (2.19) but that its diffu- 
sion rate is small enough relative to the size of the island that it can 
persist in the absence of the other species. (The necessity for a suffi- 
ciently small diffusion rate a n d / o r  sufficiently large island under 
Dirichlet boundary conditions is well known; see [7] for example. It is 
sometimes call the KISS phenomenon after Kierstead and Slobodkin 
[26] and Skellam [27] who originated the observation in the ecological 
context.) The immigrating species is still assumed to satisfy the zero 
Neumann condition (2.17) after its initial density has been induced by 
dispersal as in (2.3), but that assumption is not crucial and could be 
replaced with a Dirichlet condition. 

Suppose that (a,b) and (c,d) are as shown in Fig. 5.3, so that 
f(a, b) > 0 and g(c, d) > 0, and that 

a fO d fo f ( s ,b )  ds>O, g(c,s) ds>O. (5.6) 

Condition (5.6) permits the construction of local subsolutions as in 
Section 3, which can be used to construct irregular subsolutions for 
sub-/supersolution pairs, l e t  oh(x), ~p(x) be solutions of the following: 

tZdpxx + f ( dp, b ) = O 
~ b ( 0 )  = a ,  

, x ( 0 )  = 0, 
+ g ( c ,  ¢ )  = o, 

= d ,  

= o. 

(5.7) 

(5 . s )  
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FIG. 5.3. A stage in the construction of the sub-/supersolutions for the system 
with an Allee effect. The integrals in (5.6) are best visualized as being along the 
heavy straight lines. 

Conditions (5.6) ensure that qb and 0 decrease to zero as Ix[ increases. 
Also, the distance required for ~b or qJ to decrease to zero is propor- 
tional to ~ or ~ respectively; see formula (3.11). If we assume that u 
is small enough that the distance required for 0 to decrease to zero is 
less that 1 /2  then for at least some choices of 11 ~(0,1) the function 
0 ( x -  ll) satisfies the differential equation in (5.8) and decreases to 
zero inside the interval (0,l) as x moves away from 11 in either 
direction. Such a situation is shown schematically in Fig. 5.4. Taking the 
maximum of 0 ( x  - ll) and zero yields the function _v, which will be a 
subsolution in the super-/subsolution pair (c,_). The condition that v 
be small enough that ~ ( x -  l 1) becomes negative inside (0, l) is needed 
because of the Dirichlet boundary condition on v. No such condition 
need be imposed on ~b, so taking u to be the maximum of ~b(x - 12) and 
zero for any l 2 ~ (0, l) yields a sub-/supersolution pair (u, b). A possible 
form for u and _v. is shown in Fig. 5.4. We have by Theorem 5.1: 

THEOREM 5.3 

Suppose that u and v satisfy (2.16), (2.17), and (2.19) and that u, vv. are 
as described above. I f  

u (x )<~u(x ,O)<~c and c_(x)<~v(x,O)<~b (5.9) 
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FIG. 5.4. The subsolutions of two sub-/supersolution pairs are shown. If uo,v o 
lie above u, [ then the situation leads to coexistence. Note that u 0 may be fairly 
small over part of the interval. This may be important if we imagine a large island 
with the mainland on the left. 

then for t > 0, 

u(x )<~u(x , t )<c  and v(x)<~v(x,t)<~b. 

This result raises several points. Observe first that the theorem 
guarantees coexistence in the sense that both species persist in the long 
term. However,  it is not clear that there is a unique equilibrium that 
(u(x,t),v(x,t)) approaches as t--->~. The possibility of t ime periodic 
solutions has not been ruled out for (2.16) with boundary conditions 
(2.17) and (2.19), although by using the theory of monotone  semiflows 
developed by Hirsch and others [14] it can be shown that any such 
solution would be unstable and thus would generally not be seen in 
practice. A complete description of the ~ l i m i t  set of (2.16) under 
boundary conditions (2.17) and (2.19) is not available at the moment .  
However, if both species satisfy zero Neumann boundary conditions 
(2.17), (2.18) then solutions as in Theorem 5.3 will indeed tend to the 
constant stationary state P. 

Note next that in contrast to the results of  Theorem 5.2 the results of  
Theorem 5.3 depend crucially on the diffusion r a t e s / z  and v and on the 
size of the island l. Broadly, as is to be expected, the smaller p. and v 
and the larger I, the easier it will be for coexistence to be established 
relative to any given initial distributions. We have already observed that 
the condition that the support of  __v lie inside (0,1) can always be met  if 
v is sufficiently small, and as /z and v become smaller the size of  the 
region over which the initial distributions must be bounded away from 
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zero to satisfy (5.9) becomes smaller as well. If the resident species is 
long established and u is small then the initial distribution of v will be 
near the carrying capacity of the environment except in boundary layers 
and thus will lie above _v and so satisfy the required lower bound. As in 
the case of a single species, once l is large enough to permit the 
construction of u and _v, any further increase in 1 imposes no additional 
restrictions on the initial data. This is important if the initial density of 
the immigrant species is taken to be a decaying exponential as in (2.3). 
Thus the condition on the lower bound in Theorem 5.3 is significantly 
weaker than that required in Theorem 5.2; see Fig. 5.4 for an illustra- 
tion of this point. If we assumed a specific form for f(u,v) such as 
f(u,v) = ru[(K - u)(u - a ) -  av] and similarly for g(u,v) so that f(u,b) 
and g(c,v) would have the cubic form used in Section 3 then the 
quantitative estimates obtained in that section could be extended in a 
straightforward manner to u and _v. and so the above discussion could be 
made quantitative. We leave the details to the interested reader. 

The qualitative structure shown in Fig. 5.2 represents only one of the 
possible arrangements of the isoclines of f and g. If the isoclines never 
cross, as shown in Fig. 5.5, then coexistence is not possible in the 
nondiffusive system (5.4). In this case there is a range of initial data 
where the resident species is at its carrying capacity and the immigrat- 
ing species is near its carrying capacity and for which the populations of 
both species approach zero as t ~ oo. If the initial distribution of v is 
identically equal to the carrying capacity for v and the initial distribu- 
tion of u falls in that range then both species can be expected to 
become extinct as a result of the attempt at colonization. This phe- 
nomenon requires fairly restrictive conditions on the interactions and 
initial data, so it is unclear whether it will actually occur in natural 
systems. A more likely outcome in this situation is that one species will 
prevail and the other will become extinct, with the winner depending on 
the initial conditions and hence on the historical a n d / o r  geographical 
details of the system. 

6. CONCLUSIONS 

Our simple models for population dynamics with dispersal capture 
some of the effects that have been observed empircally or predicted on 
the basis of other theoretical considerations. What is new in our 
approach is that it is based on models that are spatially explicit and 
incorporate dispersal in a mechanistic (if greatly simplified) way. One of 
the effects displayed by our models is the distance effect, whereby a 
colonizing species must originate sufficiently close to the island being 
colonized and have sufficiently rapid dispersal and sufficiently low 
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FIG. 5.5. In this case there is an Allee effect for both species with no coexistence 
state. The stable manifolds of the unstable equilibria are shown schematically as 
broken lines. If the initial data lie between the stable manifolds, for example, as 
indicated by the shaded rectangle R, then the populations of both species will 
decline toward extinction. 

mortality in transit for colonization to succeed. In fact, our  models give 
criteria for successful colonization in terms of parameters  such as 
dispersal rates, population growth rates a n d / o r  mortality rates, mini- 
mum viable populations (or more precisely population densities), and 
carrying capacities, which can in principle be measured; see for example 
[15, 28, 29] or the discussion in [11]. Some of our results characterizing a 
good colonizer roughly (and not surprisingly) agree with those obtained 
by MacArthur  and Wilson [1, Chap. 4] via different modeling considera- 
tions. Their  explicit criteria include a low mortality rate and a large 
carrying capacity. They also remark [1, p. 78] that " I f  colonists disperse 
rapidly they will not find mates and r will not even be positive, let alone 
large. Hence cohesiveness of  the propagule is essential." Our  models do 
not incorporate separate birth and mortality rates, but our criteria for a 
good colonizer typically include a high maximum rate of  increase, a high 
ratio of carrying capacity to minimum viable population, and a low 
dispersal rate on the island (as opposed to the high dispersal rate over 
the transit corridor between the island and the continental source 
population). In fact, if the dispersal rates are the same over the transit 
corridor and on the island then in one of our models there is an optimal 
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dispersal rate with higher or lower rates being less favorable to colo- 
nization. The observation that some island species have evolved lower 
dispersal rates was made by Darwin in his discussion of the laws of 
variation in The Origin of the Species and has been supported by more  
recent studies (see [3, Chap. 2]). The predictions of  our models agree 
with that observation to the extent that the models suggest that once a 
colonizing species has arrived on an island a reduced dispersal rate is 
likely to be of adaptive value. In the context of a species attempting to 
colonize in the presence of a competi tor  our models suggest that there 
are some conditions under which history and geography are crucial to 
the outcome and other where they are not. If  there are no Allee effects 
present, the only case where history and geography seem to be critical 
corresponds to situations of strong competit ion where the outcome in 
the spatially homogeneous case depends on initial conditions. On the 
other hand, if Allee effects are present, then geography is always 
relevant and history may be, even if competit ion is weak. 

There  are many questions that deserve further attention. The models 
studied here only allow one space dimension and do not incorporate 
spatial heterogeneity or boundary conditions leading to strong size and 
shape effects as in [2, 7, 25-27, 30-33]. It would be of obvious interest to 
consider models combining distance and area effects. It would also be 
of  interest to consider situations with more  competitors or more trophic 
levels in the community. In another  direction of inquiry, it would be of 
interest to fit some of the parameters  in our models to data as in 
[26, 28, 29]. In principal it should be possible to address these questions, 
but in practice there are many difficult technicalities to be overcome. 

Order of authorship is alphabetical The research of R. S. Cantrell and 
C. Cosner was partially supported by NSF Grant DMS-9303708. 
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